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AbslraeL The energy level slalisties of a family of classically cliaolic billiards wilh analytic 
boundaries is sudied numerically with a high xz confidence lwel for the final T~SUILS, 
which go subsuntially kyond the quality of exisling similar msuIIS. The hypothesis 
of Bohigas R d is strongly suppolled by llie present RSUIIS, showing ihal Ihe level 
slalislim of dasically ergodic syrlems in llie semiclassical limit c m  indeed k described 
by the Gaussian onhogonal ensemble of the random mairk llieories, contrary to =me 
doubts which have h e n  recently laked e.g. by Wblkinson R d. Nevertheless, some ma11 
devialion of the numerical rcsu11s compared wilh the Gaussian onhogonal ensemble is 
observed and shown, ~ U I  it L\ believed to 1.e sill  a deficiency of Uie stalislical significance 
ralher than at the model. 

1. Introduction 

The purpose of the present paper is to revise and refine the numerical calculations of 
the  energy levels of a family of classically chaotic (numerically ergodic) billiards with 
analytic boundaries. A suhset of such a class of billiards has previously been studied 
in Rohnik (1984, hereafter known as paper 1). The main goal is to improve the 
statistical significance of the energy level statistics and to confirm the compatibility of 
the numerical results with the statistics of the Gaussian orthogonal ensemble (GOE) 
of random matrix theory (RMT). 

During recent years there has heen a number of works dealing with the numerical 
analysis of the energy levels of classically chaotic systems, with the goal of confirm- 
ing our expectation that the spectral statistics should he correctly described by the 
statistics of the RMT. (See the review paper by Eckhardt (1988) and the numerous 
references, therein.) Bohigas ef U /  (1984) were the first to propose the conjecture 
that energy level statistics of classically ergodic (or more chaotic) systems with time 
reversal symmetry should he suhject to the GOE statistics of the RMT. If there is no  
time reversal symmetry as in the case of chaotic systems in magnetic fields or in 
rotating systems, e.g. billiards, then the Gaussian unitary ensemble (GUE) statistics is 
the appropriate one. 

These latter systems have been studied by Berry and Rohnik (1986), Rohnik 
and Berry (1986) for the case of the family of billiards with analytic boundaries as 
analysed by the present paper and having a magnetic point flux somewhere in the 
interior thereby breaking the time reversal symmetry. (We named them Aharonov- 
Bohm billiards.) Seligman and Verbaarschot (1986) studied the sextic oscillator in 
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magnetic fields, whilst Wintgen and Friedrich (1986) and Delande and G a y  (1986) 
dealt with the statistics of the hydrogen atom in a strong magnetic field. In the 
hydrogen atom in a strong magnetic field, however, the time reversal symmetry is 
restored in spite of the presence of the magnetic field just because the system has 
reflection symmetry and therefore obeys the GOE statistics rather than GUE. So, the 
diamagnetic Kepler problem belongs to the class of systems which are described by 
the GOE, like the billiard systems of the present paper. The role of the anti-unitary 
symmetries in the predictions of level statistics has been discussed in detail and for 
the general case in Robnik and Berry (1986) and in Robnik (1986). In the present 
paper we treat only billiard systems with time reversal symmetry, i.e. there are no 
magnetic fields, but the analysis of systems without anti-unitary symmetries i., offered 
in a separate paper (Robnik 1992). 

T)Ic mntivztio!! fer the p m e E t  :unik k the ie!ntkk pm s t a t k i a !  si@!b.ncc 
of the existing numerical studies, most of which are consistent with the statistics of 
RMT, but do not provide a numerical proof of the conjecture by Bohigas el a1 (1984). 
In addition, some doubts have been recently raised by Wilkmson el al (1991) as to the 
applicability of RMT statistics to chaotic Hamiltonians (with two degrees of freedom), 
based on the model studies of the banded random matrices. 

The present paper provides additional strong support to the conjecture by Bohigas 
et al, since the statistical significance of the present numerical results goes substantially 
beyond the achievements of the existing works, namely by an order of magnitude. 

2. The definition of the family of billiard systems with analytic boundaries 

The plane billiards that we have chosen are described by the boundary curve in the 
mmplex w-plane which is a conformal map of the unit circle in the mmplex r-plane. 
Thus we choose the simplest but rich enough generic family given by 

7 0  = z + B z Z  + Ce'O z3 (1) 
where z = z + iy, w = U + io, while B and C are real parameters and 4 is a real 
angle chosen in such a manner as to warrant the absence of all geometric symmetries 
such as reflection symmetry. A set of the parameter values B, C, 4 thus determines 
a given bounding cuwe in the w-plane, which is the image of the unit circle I z I= 1 
in the z-plane. 

We have chosen twelve different sets of parameters defining twelve different bil- 
liard boundaries, as shown in table 1. Each of them has been carefully checked to 
'be numerically ergodic by investigating the Poincar6. map on the surface of section. 
As an example, in figure 1 we show the shape of the Africa billiard (no 1 in table 1). 
AI1 billiards are non-convex shapes. In fact, the non-convexity of the boundaries is 
sufficient to warrant the chaotic nature of the billiards, since it breaks all Lazutkin- 
type caustics in the configuration space and the associated invariant curves in the 
phase space. This is intuitively obvious, but there is also a theorem by Mather (1982) 
supporting this new. Some small islands of stability in the vicinity of stable periodic 
orbits muid, h principie, stiii be present, n u t  our numericai evidence does indicate 
that the systems are all ergodic for all practical purposes. Therefore the islands of 
stability must be very small indeed, if they exist at  all. 

If there are no singularities in the boundaries then the boundary is analytic and 
the conformal mapping of the unit disc in the r-plane onto the billiard in the w-  
plane is one-to-one, Le. it is bijective. This makes it possible to solve the eigenvalue 
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Table 1. ?he defining parameters 5, C ,  4 for twelve billiards, including the area A and 
perimeter C. 'Illhe billiard no I is b e  sa-called Africa billiard, introduced and extensively 
studied in Berry and Robnik (1986). 

N O B  C A C 

1 0.2 0.2 x I 3  3.7699 7.1012 
2 
3 
4 
5 
6 

0.1 
0. I 
0.1 
0.2 
0.15 
n. 1 
U. I 
0.07 
0.2 
0.2 
0.15 

0.2 
0.3 
0.2 
0.2 
0.2 
0.15 
0.25 
0.2 
0.15 
0.25 
0. I 

3.5814 

3.5814 
3.7699 
3.6599 
3.4164 
3.7934 
3.5493 
3.6049 
3.9819 
3.3772 

4.0526 
6.9218 
7.7082 
6.9444 
7.1990 
7.0486 
6.6644 
7.2644 
6.8916 
6.8428 
7.4507 
6.5997 

Figure 1. Example: the shape of the Africa billiard 
(number 1 kom table I). Each billiard boundaly 
is the conformal image of the unit disc I I I= 1 of 

- 2  -1 0 1 2 the r-plane according 10 the quation (I), with the 
" parameters given in Mble I .  

problem in the z-plane, where we have the basis of the Bessel functions, instead of 
solving it in the  U-plane, where no basis is obvious. This is the main idea of the 
conformal transformation technique which we now describe. 

3. The conformal transfurmation technique 

This method has been devised in paper 1, and is also explained in Berry and Robnik 
(1986). Our  eigenvalue problem is to solve 

- A u V $  = E$. (2) 

However rather than solving it in the u u  coordinates we want to solve it in the  
transformed plane, the r-plane, in which the boundary becomes a unit circle, and the 
Laplacian is changed conformally, namely 

A,, = A,,/J = ( a 2 / L 3 x 2  + a2/i3y2)/J (3) 
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where the conformal factor J is the Jacobian of the transformation w = W ( Z )  as 
defined in (l), namely 

J =I d w / d r  1' . (4) 

Introducing the polar coordinates 7' and 0 in the zy-plane, through r = rexp( i@) ,  
the Jacobian J (  ?-, 0) can be written as 

J ( r ,  0) = 1+4Brz+9Cr4+4Brcos 0+GCr2 c o s ( + + 2 0 ) + 1 2 B C r 3  c o s ( + + @ ) .  

(5) 

The eigenvalue problem (2) can now be rewritten in the r-plane, with the definition 
A = A.,, (i.e. henceforth we omit the indices z y  of the Laplacian in the r-plane), 
"I .-̂ ,,̂ ..." 
aJ L U I I U W 3  

A+ + E J ( r , @ ) $  = 0 

A = a 2 / a r 2  + r -2a? /a@2.  

(6) 

where A can now also be written in the polar coordinates of the z-plane 

(7) 

Suppose the set {pJ] of eigenfunctions of -A on the unit disc forms an orthonormal 
basis. Let us expand our solution $ 

Then it follows that 

z c i ( z 2 6 . .  13 - E J . . )  1) = 0 (9) 
i 

where r j  is the eigenvalue of -A corresponding to the eigenfunction io j ,  and 

T - 1 . ^ I I l , ~ \  r i m  
d i j  - \Yi I I Y j l  \'"I 

are the matrix elements of the matrix J. By the definition of the matrix U, 

(U- ' ) . .  ' J  = r . 6 . .  1 3  

( c ) i  = c; (12) 

(U- ' lU- '  - E J ) c  = 0. (13) 

(E-'I-  UJU)rC = 0. (14) 

det I j r l  - UJU I= 0 (15) 

(11) 

and of the vector c, 

equation (9) appears in the compact form 

N g ~ r ,  6 -c!tip!ylcg by fl frnm the 2nd dcfifiinn t. U-'. E I:, we ohrain 

The eigenvalues E are obtained from the solutions of the secular equation 
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where E = l/& and e = Uk, with k being the corresponding eigenvector of the 
matrix UJU. 

Our numerical method is the diagonalization of the matrix UJU in a truncated 
basis { v i } ,  1 < i < M. Let US determine the hasis {vi} .  The eigenfunctions of (7) 
are the products of Bessel and trigonometric functions, 

with the normalization constants 

Ro,n = w J & ( Y o , n ) l - l  Rk,,, = [ h / f i J L ( ~ k , , ) I  k > 0. (17) 
Here Jk is the Bessel function of order k, yk,n is the nth zero, and J; is the 
derivative of J,. The eigenvalue of the Laplace operator (7) mrresponding to the 
basis functions (16) is given by 

(18) - 2  
- O ( O k , ,  - Y,,"iOk,n' 

Now the eigenfunctions p,," are rearranged in order of increasing eigenvalues yz,n 
and for this purpose we define the map (IC. n )  c* i = i ( k $  n )  (and the inverse map 
k = k ( i ) , n  = n(i).) Thus zi = y,ci),n(i) and (U)ij = 6 i j / 2 i  (see equation (11)). 

In order to work out the diagonalization procedure (14) we need to calculate the 
matrix elements J i ,  of the matrix J (equation (lo)), using the equation (5). Notice 
the very important circumstance that the parameter dependence of the matrix J on 
the parameters B, C,  4 is hown,  since in calculating the elements (10) the integrals 
for the moments (various powers of r )  with respect to the Bessel functions have 
to be (numerically) integrated only once, so that it is easy to study the parameter 
dependence of the energy levels for small matrices (A4 small), where the most of the 
CPU time is spent on the integration of the said moments, whilst for large matrices 
like in our case where A4 = 2000, this is less important because most of the CPU 
time is spent on diagonalizing the matrix (15). 

Using this method I have calculated A4 = 2000 energy eigenvalues E for each of 
the twelve billiards defined in table 1. It should be noted that the numerical effort in 
calculating the twelve spectra is enormous: I have used a V A X W  computer, and yet 
each diagonalization consumed about 30 h CPU time. Hence in total, the calculation 
of the twelve spectra 'cost' about fifteen days of CPU lime, i.e. 360 h of CPU time! 

Special attention has heen paid to the various checks of the accuracy of the 
numerical diagonalization procedure. The size M of the matrices has been gradually 
"LClG'lJ~", >rarr,r,g w1111 i", i .,vu, U, ","Cl L" W l l l l l L I I ,  L 1 1 ( 1 1  L.K. C U C l ~ y  Irlrl- CU1."C,gG 

to their exact values. In this manner it is found that for M = 2000 the first 550 
levels are more accurate than 1% of the mean energy level spacing, and thus suitable 
for the significant statistical analysis. 

Next the Weyl-type formula 

:..--,.---A --A-.:-- ... :+I. Rd - c n n  :- ,.-An- rn mnfi-m r h n r  +ha a-nrm. I P I . P ~ O  ~_-.,n-_.. 

.,, -, A E  C h ?  , 1 N ( B )  = - - - t -  
47r 47r G 

(i9j 

for the (cumulative) number N = N ( E )  of levels below the given energy E has 
been applied for each billiard to see that the lowest 500 levels do have the mrrect 
average behaviour. One example, namely for the Africa billiard (no 1 in table l), is 
shown in figure 2 
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500 

200 

100 
Figure 2. The spectral staircast for lhe lowest 500 
levels of the Africa billiard (no I in table I), and 
the lheorelical curve according Lo the Weyl-type 
formula from the equalion (19), with area A and 
penmeter C also given in table I. 

;::m 
0 fro0 

E 

4. The results 

The object of our numerical analysis is the spectral staircase, Le. the function N (  E), 
which by definition is the number of energy levels not larger than the energy E. 

In calculating the energy level statistics we have carefully performed the unfolding 
procedure (see e.g. the review paper by Bohigas and Giannoni (1984)), which means 
that the average behaviour as given by the Weyl-type formula (19) has been eliminated 
in the energy spectrum of each billiard given in table 1. Ewplicitly, this means the 
following transformation: The function z( E) = ,U( E) is used to map the spectrum 
{Ej) onto the set of numbers {zj = z ( E j ) ) ,  

z = .(E) = ,U(E) z1 = . ( E j )  = N ( E j )  (20) 

such that the spectral staircase N ( z )  is now given as the sum of the linear average 
part plus the oscillating contribution ~ ( z ) ,  i.e. 

N ( z )  = z +  f i ( z ) .  (2') 

Thus when we talk about the spectral statistics, we mean the statistics of the unfolded 
spectral staircase N ( z )  as defined in equation (21). 

Before the statistical analysis has heen performed we have discarded in each 
spectrum the lowest fifty Icvels, and considered the five hundred levels from 51st to 
the SSOth, in order to keep the 1% accuracy of the mean level spacings and at the 
same time have the levels as close as possible to the semiclassical regime. (In other 
words, the lowest 50 levels are considered as far from the semiclassical behaviour, 
and would therefore spoil the significance of the statistical analysis, and this is the 
reason for dismissing them.) Such unfolded and selected spectra are the subject of the 
statistical analysis of the present paper. For the sake of simplicity we will henceforth 
call z energy. 

We consider three types of spectral statistics. The first is the level spacings 
distribution P( S), defined as the probability density, such that the probability that 
the level spacing S lies in the interval (S, S + CIS) is given by P ( S ) d S .  The GOE 
theory is closely approximated by the Wigner distribution, namely 

PGOE(S) = (n/ .2)Sexp(-7rS~/4) .  (22) 
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Next the rigidity A ( L )  is the local average least squares deviation of the spectral 
staircase N ( z )  from the best-fitting straight line, Over an energy range z of L mean 
level spacings. Thus 

The averaging indicated by (...) is Over each individual spectral stretch, and also over 
the ensemble of spectral stretches corresponding to various billiards of the given set. 
The GOE theoretical formula is asymptotically given by (see (Berry 1985)) 

AcoE(L)- ( l /? r2) In  1,-0.00695 L > 1 .  (24) 

The third spectral statistics is the cumulative level spacings distribution W (  S), 
ie. 

S 

W ( S )  = 1 dtP(1)  (25) 
0 

where P( S) is the level spacings distribution defined earlier. 
Let us look at the results of the statistical analysis of our spectra. ’ho  sets of 

spectra are considered, both of them being a composite of several spectra. The first 
one consists of the first three billiards from the table 1 (‘trio’), and the second one 
consists of all the twelve billiards given in tahle 1 (‘complete set’). 

The trio is thus a composite of 3 x 500 = 1500 levels. The results are excellent 
as seen in figures 3(a)-(c). In each of these figures we show three theoretical curves, 
namely the Poissonian (characteristic of integrable systems), the GUE curve and the 
theoretically expected GOE curve. It is readily seen that the agreement with theory 
is excellent and certainly better than in the existing data. The cumulative spacings 
W ( z )  closely follow the theoretical curve of GOE (figure 3(a)), and so does the 
histogram in figure 3(b). The A-statistics shown in figure 3(c)  is consistent with the 
theoretical curve of GOE. The saturation shown in figure 3(c) can be fully understood 
in terms of the semiclassical theory of spectral rigidity by Berry (1985): The saturation 
should start at L,,, 2: 40, and the saturation value should be A, x 0.2. Finally, 
the x’ test has been performed for the cumulative spacings distribution W (  S), with 
the result that the confidence level is 93%. We have also calculated the second 
moment of the histogram P ( S ) ,  with the result u2 = ( S 2 )  - 1 = 0.292 (for the 
80-bin histogram), whilst the theoretical value for the GOE is 0.286 + 0.015, so that 
the numerical result is well consistent with the FOE value. 

Now we consider the results for the complete set of billiards from table 1, and 
present the results in the same manner as for the trio, as shown in figures 4(a)-(c). 
This sample consists now of 6000 levels. Figure 4(a) shows that the agreement of the 
cumulative spacings distribution with the theoretical curve is now not so good as for 
the trio, which is a demonstration of the extremely slow (and oscillatory) convergence 
of statistics. The xz confidence level for W ( s )  is now somewhat smaller, namely 
80%, although the histogram with 80 bins in figure 4(b) is considerably better than 
in the trio, as judged by naked eye. Finally, the A-statistics is well behaved and k 
almost the Same as for the trio. The U’ is now 0.298, which is consistent with the 
GOE theoretical value. 
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5. Conclusions and discussion 

Figure 3. The mulls for the trio of the first 
lbrce billiards of lable 1. In each figure Ihere are 
three llieorelical awes: the Poiuonian (dotted), 
the CUE curve (full) and the W E  curye (Woken). 
(0)  ' h e  cumulative energy level spacings dislnbu- 
lion W ( S )  = J ; d f P ( f ) ;  (b) energy level spac- 
ings histogram with 80 bins; (c) A ( L )  slalistics as 
a funclion of L for 0 < L < 40; the saluralion 
OCCUR at L,,, ~3 30. 

In my view the results of the present work do provide strong additional evidence in 
support of the conjecture by Bohigas el U/ (1984) that the energy levels of classically 
ergodic (or more chaotic) billiards obey the GOE statistics of the RMT, if they possess 
time reversal symmetry, or some other anti-unitary symmetry. (Recently some doubts 
have been raised by Wilkinson er a1 (1991) as to the validity of the said conjecture.) 
This assertion applies both to the trio ensemble of the first three billiards of table 
1, as well as to the complete set of the twelve billiards of table I. The assertion 
is consistent with the semiclassical considerations, e.g. with Berry's (1985) theory 
of spectral rigidity: As h goes to zero, the fluctuations vanish, the border of the 
saturation regime L,,, tends to infinity and so does the Saturation level A,, so 
that gradually the entire range 0 < L < 00 displays the universal behaviour of the 
A-statistics as given in equation (24). 

At the same time the present work shows that the convergence with increasing 
size of the ensemble of energy levels is extremely slow, reflected in the fact that the 
results for the twelve billiards are not of better quality than the results for the trio. 
Most notable is the deviation of the cumulative spacings distribution W ( S )  from 
the GOE curve for the complete set of twelve billiards (figure 4(a)): the numeriGd 



O 1 2 3 
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0 20 La  
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Figure 4 me results presented as in figure 3 
but now for lhe complete set of twelve billiards 
&i given in able 1. In each figure there are 
three theoretical curves: lhe Pokonian (dolled), 
the CUE C U N ~  (full) and the FOE curve (broken). 
(0)  'rile cumulative energy level spacings dislribu- 
tion W ( S )  = J:dtP(l); (b)  energy level spac- 
ings histogram with 80 bins; (c) A ( L )  satistia as 
a function of L for 0 < L < 40; the saturation 
occum at Lmax z 30. 

staircase deviates slightly from the theoretical curve for small S, whereas in the case 
of the trio there is excellent agreement. 

This deficiency is thus believed to be a manifestation of the slowness of the 
convergence of the statistical measures rather than a proof of a definite deviation of 
the measures from the GOE theoretical curves. This slow convergence is also a clear 
demonstration that the results presented in this paper are just at the border of the 
reasonable size of ensembles suitable and justified for the numerical analysis, given 
the capacity of present day computers. 

There b no douht that the slow convergence has something to do with the classi- 
cal periodic orbits and their oscillatory contributions to the spectra in the spirit of the 
Berry's theory of spectral rigidity. It would he quite odd indeed, if the eigenfunctions 
of classically ergodic (or more chaotic) systems would display scar phenomena (Heller 
1984, 1991) which are the deviations from Gaussian randomness, but no associated 
phenomena in their energy spectra would exist. This is implicit in the early and fun- 
damental theory of Gutzwiller (see the review by Eckhardt (1988) and the references 
therein). The explanation is that the GOE hehaviour is reached when h -+ 0 or, 
equivalently, when the energy goes to infinity, i.e. the infinite number of levels are 
considered in each individual spectrum of each individual billiard. 

There could be, in principle, two further theoretical reasons for a deviation of 
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statistics from the GOE predictions. One reason could be the existence of an ap- 
proximate reflection symmetry (the billiard shape is close to one with a reflection 
symmetry) or some other discrete geometrical symmetry. This has been largely elimi- 
nated by the careful choice of the parameters B. C, 4, such that the spectral statistics 
of each individual billiard was clearly GOE. 

We can, however, report peculiar energy level statistics for two billiards which 
have been studied but are not shown and considered in this work. These are B = 
0.2,C = 0.1,+ = r / 3  and B = 0.1,C = O . l , +  = r / 3 .  Both of them are 
certainly numerically ergodic (no islands of stability have been detected), and also, 
at first glance they are sufficiently far from having a discrete geometric symmetry. 
Yet, they do display energy level statistics characteristic of two randomly superposed 
GOE sequences, rather than one. For this reason they have been dismissed. This 
fact might imply that the transition from one GOE to two superposed GOE statistics 
might be smooth for finite spectral stretches, and calls for caution. It could be one 
reason for the fact that the results for the trio are better than the results for the 
complete set, just because some of the billiards of the complete set of table 1 might 
not be. sufficiently far from having some geometric symmetry, the reflection symmetry 
or the parity, even though the overall behaviour for each of them was clearly GOE, as 
mentioned above. It is proposed to carry out a quantitative analysis of the transition 
of the statistics from GOE to 2 x GOE as the geometrical shape gradually approaches 
the shape with reflection symmetry (or inversion symmetry). 

Another reason in principle for deviations from GOE would be the existence of 
small islands of stability, Le. broken ergodicity of the billiard system. This has also 
been eliminated by the careful study of the Poincari maps pounce maps) for each of 
the twelve billiards. So, it is our belief that the deviation from GOE is predominantly 
a genuine semiclassical effect of classical periodic orbits, which make the convergence 
of the statistics very slow. 

In conclusion, the present work supplies firm evidence in support of our view 
that in the semiclassical limit tr -+ 0 the energy level statistics of classically ergodic 
(or more chaotic) Hamiltonian systems is correctly described by the GOE statistics, if 
there is time reversal symmetry or some other anti-unitary symmetry. 
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